Skip to content

dataframe ¤

signal_condiction ¤

signal_condiction(
    dataframe: DataFrame,
    condictions: list[dict],
    name: str,
    value: int | float = np.nan,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_type: Literal["line", "mark"] = "mark",
    **kwargs
) -> Series | DataFrame

Define a signal with multiple condiction

Parameters:

  • dataframe (DataFrame) –

    description

  • condictions (list[list[Series | Any]]) –

    Pairs of condiction [<pandas.Series condiction>, <value>]

  • name (str) –

    Name of signal, column name when add to DataFrame with inplace=True.

  • value (int, default: nan ) –

    Default value when condiction is not matched. Defaults to 0.

  • inplace (bool, default: False ) –

    description. Defaults to False.

  • plot (bool | list, default: False ) –

    description. Defaults to False.

  • plot_type (Literal['line', 'mark'], default: 'mark' ) –

    description. Defaults to "line".

Usage
df.i.signal_condiction(
    [df["close"] > df["open"], 100],
    [df["close"] < df["open"], -100],
    name="cdl_direction",
    inplace=True,
    plot=True,
)

Raises:

Returns:

  • Series | DataFrame

    pd.Series | pd.DataFrame: description

Source code in lettrade/indicator/dataframe.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def signal_condiction(
    dataframe: pd.DataFrame,
    condictions: list[dict],
    name: str,
    value: int | float = np.nan,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_type: Literal["line", "mark"] = "mark",
    **kwargs,
) -> pd.Series | pd.DataFrame:
    """Define a signal with multiple condiction

    Args:
        dataframe (pd.DataFrame): _description_
        condictions (list[list[pd.Series | Any]]): Pairs of condiction [`<pandas.Series condiction>`, `<value>`]
        name (str): Name of signal, column name when add to DataFrame with inplace=True.
        value (int, optional): Default value when condiction is not matched. Defaults to 0.
        inplace (bool, optional): _description_. Defaults to False.
        plot (bool | list, optional): _description_. Defaults to False.
        plot_type (Literal["line", "mark"], optional): _description_. Defaults to "line".

    Usage:
        ```python
        df.i.signal_condiction(
            [df["close"] > df["open"], 100],
            [df["close"] < df["open"], -100],
            name="cdl_direction",
            inplace=True,
            plot=True,
        )
        ```

    Raises:
        RuntimeError: _description_

    Returns:
        pd.Series | pd.DataFrame: _description_
    """
    if __debug__:
        if not isinstance(dataframe, pd.DataFrame):
            raise RuntimeError(
                f"dataframe type '{type(dataframe)}' "
                "is not instance of pandas.DataFrame"
            )

    # Series
    indicators = []
    plots = {}
    for condiction in condictions:
        series_value = pd.to_numeric(condiction["value"], errors="coerce")
        series_index = dataframe.loc[condiction["series"]].index
        series = pd.Series(
            series_value,
            index=series_index,
            name=condiction["name"],
            **kwargs,
        )
        indicators.append(series)

        if plot and "plot_kwargs" in condiction:
            plots[condiction["name"]] = condiction["plot_kwargs"]

    # Plot
    if plot:
        from lettrade.indicator.plot import IndicatorPlotter
        from lettrade.plot.plotly import plot_line, plot_mark

        for series in indicators:
            if series.name not in plots:
                continue

            plot_kwargs = plots[series.name]
            plot_kwargs.update(series=series, name=series.name)

            plotter = plot_mark if plot_type == "mark" else plot_line
            IndicatorPlotter(dataframe=dataframe, plotter=plotter, **plot_kwargs)

    # Merge
    series = pd.Series(value, index=dataframe.index, name=name, **kwargs)
    for s in indicators:
        series.update(s)

    if inplace:
        dataframe[name] = series
        return dataframe

    return series

signal_direction ¤

signal_direction(
    dataframe: DataFrame,
    up: Series,
    down: Series,
    name: str = "direction",
    value: int = 0,
    value_up: int = 100,
    value_down: int = -100,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_type: Literal["line", "mark"] = "mark",
    plot_up_kwargs: dict | None = None,
    plot_down_kwargs: dict | None = None,
    **kwargs
) -> Series | DataFrame

Define a signal with 2 direction Up and Down with fixed value

Parameters:

  • dataframe (DataFrame) –

    description

  • up (Series) –

    description

  • down (Series) –

    description

  • name (str, default: 'direction' ) –

    Name of signal, column name when add to DataFrame with inplace=True.

  • value (int, default: 0 ) –

    Default value when condiction is not matched. Defaults to 0.

  • value_up (int, default: 100 ) –

    description. Defaults to 100.

  • value_down (int, default: -100 ) –

    description. Defaults to -100.

  • inplace (bool, default: False ) –

    Whether to add to the DataFrame and return DataFrame rather than return result. Defaults to False.

  • plot (bool | list[str], default: False ) –

    description. Defaults to False.

  • plot_type (Literal['line', 'mark'], default: 'mark' ) –

    description. Defaults to "mark".

  • plot_up_kwargs (dict | None, default: None ) –

    description. Defaults to None.

  • plot_down_kwargs (dict | None, default: None ) –

    description. Defaults to None.

Returns:

  • Series | DataFrame

    pd.Series | pd.DataFrame: description

Source code in lettrade/indicator/dataframe.py
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def signal_direction(
    dataframe: pd.DataFrame,
    up: pd.Series,
    down: pd.Series,
    name: str = "direction",
    value: int = 0,
    value_up: int = 100,
    value_down: int = -100,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_type: Literal["line", "mark"] = "mark",
    plot_up_kwargs: dict | None = None,
    plot_down_kwargs: dict | None = None,
    **kwargs,
) -> pd.Series | pd.DataFrame:
    """Define a signal with 2 direction Up and Down with fixed value

    Args:
        dataframe (pd.DataFrame): _description_
        up (pd.Series): _description_
        down (pd.Series): _description_
        name (str): Name of signal, column name when add to DataFrame with inplace=True.
        value (int, optional): Default value when condiction is not matched. Defaults to 0.
        value_up (int, optional): _description_. Defaults to 100.
        value_down (int, optional): _description_. Defaults to -100.
        inplace (bool, optional): Whether to add to the DataFrame and return DataFrame rather than return result. Defaults to False.
        plot (bool | list[str], optional): _description_. Defaults to False.
        plot_type (Literal["line", "mark"], optional): _description_. Defaults to "mark".
        plot_up_kwargs (dict | None, optional): _description_. Defaults to None.
        plot_down_kwargs (dict | None, optional): _description_. Defaults to None.

    Returns:
        pd.Series | pd.DataFrame: _description_
    """

    # Up
    if plot_up_kwargs is None:
        plot_up_kwargs = dict()
    plot_up_kwargs.setdefault("color", PlotColor.CYAN)

    # Down
    if plot_down_kwargs is None:
        plot_down_kwargs = dict()
    plot_down_kwargs.setdefault("color", PlotColor.ORANGE)

    return signal_condiction(
        dataframe=dataframe,
        condictions=[
            dict(
                series=up,
                value=value_up,
                name=f"{name}_up",
                plot_kwargs=plot_up_kwargs,
            ),
            dict(
                series=down,
                value=value_down,
                name=f"{name}_down",
                plot_kwargs=plot_down_kwargs,
            ),
        ],
        name=name,
        value=value,
        inplace=inplace,
        plot=plot,
        plot_type=plot_type,
        **kwargs,
    )

signal_exist ¤

signal_exist(
    dataframe: DataFrame,
    series: Series,
    window: int,
    value_exist_up: int = 100,
    value_exist_down: int = -100,
    name: str = "exist",
    value_up: int = 100,
    value_down: int = -100,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_up_kwargs: dict | None = None,
    plot_down_kwargs: dict | None = None,
    **kwargs
) -> Series | DataFrame

summary

Parameters:

  • dataframe (DataFrame) –

    description

  • series (Series) –

    description

  • window (int) –

    description

  • value_exist_up (int, default: 100 ) –

    description. Defaults to 100.

  • value_exist_down (int, default: -100 ) –

    description. Defaults to -100.

  • name (str, default: 'exist' ) –

    description. Defaults to "exist".

  • value_up (int, default: 100 ) –

    description. Defaults to 100.

  • value_down (int, default: -100 ) –

    description. Defaults to -100.

  • inplace (bool, default: False ) –

    description. Defaults to False.

  • plot (bool | list[str], default: False ) –

    description. Defaults to False.

  • plot_up_kwargs (dict | None, default: None ) –

    description. Defaults to None.

  • plot_down_kwargs (dict | None, default: None ) –

    description. Defaults to None.

Returns:

  • Series | DataFrame

    pd.Series | pd.DataFrame: description

Source code in lettrade/indicator/dataframe.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def signal_exist(
    dataframe: pd.DataFrame,
    series: pd.Series,
    window: int,
    value_exist_up: int = 100,
    value_exist_down: int = -100,
    name: str = "exist",
    value_up: int = 100,
    value_down: int = -100,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_up_kwargs: dict | None = None,
    plot_down_kwargs: dict | None = None,
    **kwargs,
) -> pd.Series | pd.DataFrame:
    """_summary_

    Args:
        dataframe (pd.DataFrame): _description_
        series (pd.Series): _description_
        window (int): _description_
        value_exist_up (int, optional): _description_. Defaults to 100.
        value_exist_down (int, optional): _description_. Defaults to -100.
        name (str, optional): _description_. Defaults to "exist".
        value_up (int, optional): _description_. Defaults to 100.
        value_down (int, optional): _description_. Defaults to -100.
        inplace (bool, optional): _description_. Defaults to False.
        plot (bool | list[str], optional): _description_. Defaults to False.
        plot_up_kwargs (dict | None, optional): _description_. Defaults to None.
        plot_down_kwargs (dict | None, optional): _description_. Defaults to None.

    Returns:
        pd.Series | pd.DataFrame: _description_
    """
    up_rolling_max = series.rolling(window=window).max()
    down_rolling_min = series.rolling(window=window).min()

    signal = signal_direction(
        dataframe=dataframe,
        up=(up_rolling_max >= value_exist_up),
        down=(down_rolling_min <= value_exist_down),
        name=name,
        value_up=value_up,
        value_down=value_down,
        inplace=inplace,
        plot=plot,
        plot_up_kwargs=plot_up_kwargs,
        plot_down_kwargs=plot_down_kwargs,
        **kwargs,
    )
    return signal

signal_repeat ¤

signal_repeat(
    dataframe: DataFrame,
    series: Series,
    window: int,
    value_repeat_up: int = 100,
    value_repeat_down: int = -100,
    name: str = "repeat",
    value_up: int = 100,
    value_down: int = -100,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_up_kwargs: dict | None = None,
    plot_down_kwargs: dict | None = None,
    **kwargs
) -> Series | DataFrame

summary

Parameters:

  • dataframe (DataFrame) –

    description

  • series (Series) –

    description

  • window (int) –

    description

  • value_repeat_up (int, default: 100 ) –

    description. Defaults to 100.

  • value_repeat_down (int, default: -100 ) –

    description. Defaults to -100.

  • name (str, default: 'repeat' ) –

    description. Defaults to "repeat".

  • value_up (int, default: 100 ) –

    description. Defaults to 100.

  • value_down (int, default: -100 ) –

    description. Defaults to -100.

  • inplace (bool, default: False ) –

    description. Defaults to False.

  • plot (bool | list[str], default: False ) –

    description. Defaults to False.

  • plot_up_kwargs (dict | None, default: None ) –

    description. Defaults to None.

  • plot_down_kwargs (dict | None, default: None ) –

    description. Defaults to None.

Returns:

  • Series | DataFrame

    pd.Series | pd.DataFrame: description

Source code in lettrade/indicator/dataframe.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def signal_repeat(
    dataframe: pd.DataFrame,
    series: pd.Series,
    window: int,
    value_repeat_up: int = 100,
    value_repeat_down: int = -100,
    name: str = "repeat",
    value_up: int = 100,
    value_down: int = -100,
    inplace: bool = False,
    plot: bool | list[str] = False,
    plot_up_kwargs: dict | None = None,
    plot_down_kwargs: dict | None = None,
    **kwargs,
) -> pd.Series | pd.DataFrame:
    """_summary_

    Args:
        dataframe (pd.DataFrame): _description_
        series (pd.Series): _description_
        window (int): _description_
        value_repeat_up (int, optional): _description_. Defaults to 100.
        value_repeat_down (int, optional): _description_. Defaults to -100.
        name (str, optional): _description_. Defaults to "repeat".
        value_up (int, optional): _description_. Defaults to 100.
        value_down (int, optional): _description_. Defaults to -100.
        inplace (bool, optional): _description_. Defaults to False.
        plot (bool | list[str], optional): _description_. Defaults to False.
        plot_up_kwargs (dict | None, optional): _description_. Defaults to None.
        plot_down_kwargs (dict | None, optional): _description_. Defaults to None.

    Returns:
        pd.Series | pd.DataFrame: _description_
    """
    up_rolling_min = series.rolling(window=window).min()
    down_rolling_max = series.rolling(window=window).max()

    signal = signal_direction(
        up=(up_rolling_min >= value_repeat_up),
        down=(down_rolling_max <= value_repeat_down),
        dataframe=dataframe,
        name=name,
        value_up=value_up,
        value_down=value_down,
        inplace=inplace,
        plot=plot,
        plot_up_kwargs=plot_up_kwargs,
        plot_down_kwargs=plot_down_kwargs,
        **kwargs,
    )
    return signal